Indirect Current Control for Seamless Transfer of Three-Phase Utility Interactive Inverters

Sunjae Yoon and Junbum Kwon
LSIS R&D Center
LS Industrial Systems Co., Ltd.
Gyeonggi-do, Korea
E-mail: sunjae@seoultech.ac.kr

Junsung Park and Sewan Choi, IEEE Senior Member
Dept. of Control and Instrumentation Eng.
Seoul National University of Science and Technology
Seoul, Korea
E-mail: schoi@seoultech.ac.kr

Abstract— This paper proposes an indirect current control algorithm for seamless transfer of three-phase utility-interactive inverters. With the proposed method the inverter is able to provide critical loads with a stable and seamless voltage during the whole transition period including both clearing time and control mode change. The LCL filter design which is suitable for the indirect current control is also proposed to meet the harmonic limits. The proposed control method is validated through simulation and experiment.

Index Terms—three-phase inverter, utility-interactive inverter, seamless transfer, indirect current control, LCL filter

I. INTRODUCTION

Recently, new and renewable energy sources such as fuel cells, photovoltaic and wind turbines have been recognized as major alternative means to fossil fuels. Alternative energy sources which range from 1kW to several hundred MW level generate either DC or variable frequency AC and are normally connected to the grid as a distributed generation (DG) system. Utility-interactive inverters have been playing an important role in the DG. The utility-interactive inverter should operate in both grid-connected and stand-alone modes to provide uninterrupted and continuous power to critical loads, for example, such as power supplies for MBOP(mechanical balance of plant) in fuel cell systems. During the grid-connected mode the inverter is operated to inject power from the DG unit to the grid. When a fault occurs in the grid, a recloser switch is open and the DG unit enters into islanding. Then, the inverter should detect the

islanding and cease to energize the grid by disconnecting the DG unit from the grid within two seconds which is a required clearing time[1]. Fig. 1 shows a detailed transfer sequence from grid-connected mode to stand-alone mode. The clearing time consists of detection time, adjustable time delay and operating time of an inverter switch. The detection time is defined as the minimum length of time from turn-off of the recloser, which is considered as the islanding, to change in state of the inverter’s output dedicated to controlling the inverter switch that is a usually circuit breaker. This is often on the order of 8 to 16ms. The adjustable time delay is the intentional time added to the detection time in order to provide the desired clearing time. This may be adjustable from zero to several seconds. The operating time of the circuit breaker should be considered in this mode transfer sequence and is often longer than 50ms. During this unintentional islanding, voltage across the critical load may experience severe transient state since the inverter switch is still closed and the voltage is determined by the amount of injected power and unknown load condition. Further, there exists a large transient across the critical load even after actual turn-off of the inverter switch since the conventional controller should be changed from current controlled mode to voltage controlled mode.

A simulation result of the conventional control method is shown in Fig. 2 to illustrate the transient associated with the mode transfer that observes the sequence shown in Fig. 1. Excessive transient voltage across the critical load can be seen during the clearing time as well as the control mode change which is performed right after the actual turn off of

![Fig. 1 A transfer sequence from grid-connected to stand-alone mode[1]](image-url)
the switch. Thus, one of the key functions of the utility-interactive inverter is seamless transfer between grid-connected and stand-alone modes, which is a main focus of this research.

A sequence for smooth mode transfer between two modes has been addressed and implemented in [2,3]. A control technique proposed in [4] reduces turn-off time of a static switch (SCR) by controlling voltage across the grid-side inductor, which results in quick grid current decrease. The voltage transient across the critical load could last longer if circuit breakers are used as an inverter switch since operating time is at least several tens of millisecond. In order to alleviate the transient voltage and inrush current associated with operating time of a circuit breaker a control algorithm using the feedback status of circuit breakers has been proposed [5]. However, the control methods for mode transfer proposed in [2-5] have a drawback. For mode transfer the inverter should change its controller from current control to voltage control, which can cause large voltage or current spikes. A control method for single-phase system has been proposed to eliminate the transient associated with the control mode change by utilizing both current and voltage controllers in both grid-tied and off-grid modes[6]. However, this method can not avoid the voltage transient across the critical load during the clearing time. Further, none of the above mentioned control algorithms for seamless transfer [2-6] did consider the transient state during the whole transition period including both clearing time and control mode change.

An indirect current control method was proposed for seamless transfer of a single-phase utility interactive inverter, where the transient associated with control mode change has significantly been reduced by controlling the peak value of the output current with an inner voltage loop in both grid-connected and stand-alone modes [7]. A drawback of this method is that the inverter is not able to control instantaneous values in the grid-connected mode since peak value of inductor current is used for current control, which may result in inaccurate instantaneous values or dc-offset of grid current during the transient-state. Further, the desired resonant frequency and filter cut-off frequency which vary according to variation of grid-side inductance may not be obtained since the LCL filter design was not based on the exact LCL model. Also, the grid current may not meet the harmonic limits since the ripple rate of the grid current was not considered in the grid-side inductance calculation.

This paper proposes a control algorithm for seamless transfer of three-phase utility-interactive inverters. By controlling the capacitor voltage in both grid-connected and stand-alone modes the proposed method is capable of providing critical loads with a stable and seamless voltage during the whole transition period including both clearing time and control-mode-change transition. Also, the proposed method is able to guarantee accurate instantaneous values of injected current without dc offset during the transient state by introducing dq-transformation to control instantaneous values of the output current. Further, a LCL filter design method which is suitable for indirect current control is proposed to achieve desired resonant frequency and filter cut-off frequency and meet the harmonic limits by considering the ripple rate of the grid current in the grid-side inductance calculation.

II. PROPOSED CONTROL ALGORITHM

A. Operating Principle of Three-phase Indirect Current Control

Fig. 3 shows the circuit diagram of a three-phase utility-interactive inverter for DG system. The three-phase inverter with LCL filters is connected to the grid through an inverter switch, a step-up transformer and a recloser. A critical load is located between the LCL filter and the switch. Fig. 4 shows a phasor diagram illustrating operating principle of the proposed indirect control for the three-phase utility interactive inverter. The basic idea of the proposed control is to regulate grid-side inductor current \(I_{Lg} \) by controlling the magnitude and phase angle of capacitor voltage \(V_{Cf} \) so that desired magnitude of current which is in phase with the utility voltage is injected to the grid. In Fig. 4(a) capacitor voltage \(V_{Cf} \) is being controlled to be equal in magnitude and phase to the grid voltage so that no current is injected into the grid. By increasing magnitude and phase of \(V_{Cf} \) such that voltage \(V_{Cf} \) is perpendicular to grid voltage \(V_g \), the amount of injected current \(I_{Lg} \) that is in phase with \(V_g \) can be increased, as shown in Fig. 4(b) and (c).

The dq-current commands on the grid-side inductor can
be calculated as follows if the desired real and reactive power are assumed to be P^* and Q^*, respectively,

$$I_{Lg}^* = \frac{2}{3} \left(P^* V_g^d + Q^* V_g^q \right)$$ \tag{1}$$

$$I_{Lg}^{\ast\ast} = \frac{2}{3} \left(P^* V_g^d - Q^* V_g^q \right)$$ \tag{2}$$

Then, the voltage across grid-side inductor should be,

$$V_{Lg}^d = \omega L_g \times I_{Lg}^*$$ \tag{3}$$

Therefore, the required magnitude and angle of capacitor voltage V_{Cf} to generate P^* and Q^* can be obtained by,

$$|V_{Cf}| = \sqrt{\left(V_{Lg}^d \right)^2 + \left(V_{Lg}^q \right)^2}$$ \tag{4}$$

$$\alpha = \tan^{-1} \left(\frac{V_{Lg}^q}{V_{Lg}^d} \right)$$ \tag{5}$$

Fig. 5 shows the proposed control block diagram for grid-connected and stand-alone operations of the three-phase utility-interactive inverter. The controller consists of an outer current control loop for regulating desired amount of injection current and an inner voltage control loop for controlling instantaneous capacitor voltage.

Both outer current and inner voltage loops are used for the grid-connected mode. The dq-current commands I_{Lg}^* and $I_{Lg}^{\ast\ast}$, which are obtained by equations (1) and (2) respectively, are fed to PI controllers. Outputs of the PI controllers $\Delta \theta_d$ and $\Delta \theta_q$, which denote signals for compensating phase and magnitude errors of current reference, are summed together and added to angle α and reference angle of the grid θ to generate a reference angle θ^* of the capacitor voltage. The values from the sine and cosine table are multiplied by reference magnitude $|V_{Cf}|$ of the capacitor voltage to generate capacitor voltage commands V_{Cf}^{d*} and V_{Cf}^{q*} in the synchronous reference frame. The error between the commanded and measured values is fed to a voltage compensator to generate PWM signals for the inverter. Only the inner voltage loop is used for the stand-alone mode. The PI controllers are used to regulate the capacitor voltage commands V_{Cf}^{d*} and V_{Cf}^{q*}, which become 0 and rated peak value of line-to-neutral grid voltage, respectively.

B. Mode Transfer Sequence

The proposed procedure to change from grid-connected to stand-alone mode is summarized as follows.

Fig. 3 Circuit diagram of a three-phase utility-interactive inverter with a critical load

Fig. 4 Phasor diagram illustrating the operating principle of the proposed indirect current control during the grid-connected mode (a) no current injection (b) medium current injection (c) rated current injection

Fig. 5 Block diagram of the proposed indirect control for a three-phase utility-interactive inverter
1) Detect a fault on the grid.
2) Give a turn-off signal to the inverter switch.
3) Wait until the status of the inverter switch is in the off-state.
4) Switch the operation mode from grid-connected mode ‘G’ to stand-alone mode ‘S’.
5) Gradually change voltage references $V_{Cf,g}^{d*}$ and $V_{Cf,g}^{q*}$ from the last values of $V_{Cf,g}^{d}$ and $V_{Cf,g}^{q}$ to the desired 0 and rated peak value of line-to-neutral grid voltage, respectively.

Fig. 6 shows key waveforms of the proposed indirect control for seamless transfer between grid-connected and stand-alone mode. When the grid fault occurs, a recloser is open and the grid current is dumped into the critical load in the conventional control, which could cause a transient voltage across the load. However, in the proposed control magnitude reference of capacitor voltage $V_{Cf,*}$ and compensation terms for phase reference which are outputs from the current controllers are restricted to appropriate values by limiters, leading to negligible transient voltage across the critical load. The voltage across the critical load is well regulated and maintained as sinusoidal waveform throughout the clearing time. It is seen that the transient voltage across the load does not occur even at actual turn-off of the inverter switch since the voltage control is maintained throughout the whole operation period.

In the meanwhile, the proposed procedure to change from stand-alone to grid-connected mode is summarized as follows.

1) Detect that the grid voltage is within the normal operating voltage range.
2) Adjust the phase and magnitude of the inverter output voltage to match the grid voltage.
3) If the inverter output voltage matches the grid voltage, turn on the inverter switch.
4) Wait until the status of the inverter switch becomes on-state.
5) Switch the operation mode from stand-alone mode ‘S’ to grid-connected mode ‘G’.
6) Gradually increase the current reference to the desired value.

III. LCL FILTER DESIGN FOR PROPOSED CONTROL

For grid interface, the harmonics of injected current should be limited according to the harmonic limits presented in the standards, e.g., IEEE 1547-2003. LCL filters are usually designed in such a way that inverter-side inductor is firstly chosen to attenuate its ripple current and then a capacitor and grid-side inductor is added to meet the harmonic limits[8][9]. In the proposed indirect current control LCL filter is designed in such a way that LC-filter is firstly chosen to have desired damping factor and filter cutoff frequency, and then grid-side inductor is added to satisfy the harmonic requirement. The proposed LCL filter design procedure is as follows.

Given rated inverter output power P, grid voltage V_g, dc-link voltage V_{dc}, switching frequency $f_{sw}=\omega_{sw}/2\pi$ and desired ripple rate of the grid-side inductor current $r_{g}=I_{Lg,sw}/I_{Lg,i}$, the inverter output power can be expressed as, assuming $I_{Ll,i}>>I_{Cf,i}$,

$$P = 3V_g I_{Lg,i} \approx 3V_g I_{Ll,i}$$

Fig. 6 Key waveforms of the proposed indirect control for seamless mode transfer of a three-phase utility-interactive inverter
Assuming SPWM with modulation index of 0.8 is used as a inverter switching method and the switching frequency is much higher than the fundamental frequency, rms value of the inverter output voltage at the switching frequency $V_{\text{L\text{sw}}}$ becomes [10],

$$V_{\text{L\text{sw}}} = 0.818 \times 0.5V_{\text{dc}} / \sqrt{2}$$ \hspace{1cm} (7)

Also, the rms value of the grid-side inductor current at the switching frequency can be obtained by,

$$I_{\text{Lg\text{sw}}} = \frac{V_{\text{L\text{sw}}}}{\alpha_{\text{sw}} \cdot r_{g} \cdot P}$$ \hspace{1cm} (8)

Then, from equations (6)-(8), the grid-side inductor can be obtained by,

$$L_{g} = \frac{0.867 \cdot a \cdot V_{\text{dc}} \cdot V_{g}}{\alpha_{\text{sw}} \cdot r_{g} \cdot P}$$ \hspace{1cm} (9)

where $a = V_{\text{cl\text{sw}}} / V_{\text{L\text{sw}}}$ is capacitor voltage ripple attenuation at the switching frequency. Assuming $V_{\text{L\text{sw}}} >> V_{\text{cl\text{sw}}}$, rms value of the inverter-side inductor current at the switching frequency can be obtained by,

$$I_{\text{Ll\text{sw}}} = \frac{V_{\text{L\text{sw}}}}{\alpha_{\text{sw}} \cdot L_{l}}$$ \hspace{1cm} (10)

Then, from equations (6), (7) and (10) the inverter-side inductor is determined by,

$$L_{l} = \frac{0.867 \cdot V_{\text{dc}} \cdot V_{g}}{\alpha_{\text{sw}} \cdot r_{l} \cdot P}$$ \hspace{1cm} (11)

where $r_{l} = I_{\text{Ll\text{sw}}} / I_{\text{Ll\text{1}}}$ ($1 > r_{l} > r_{g}$) is ripple rate of the inverter-side inductor current which is usually selected as 0.1–0.5.

From the LCL model [11], rms value of the capacitor voltage at the switching frequency can be obtained by,

$$V_{c,\text{sw}} = \frac{L_{c}}{\omega_{\text{sw}}^{2} L_{g} C_{f} L_{l} + \left(L_{g} + L_{c}\right) V_{i,\text{sw}}}$$ \hspace{1cm} (12)

Then, the capacitor is determined by,

$$C_{f} = \frac{1}{\omega_{\text{sw}}^{2} a \left(1 - a \frac{\alpha_{\text{sw}} \cdot r_{g} \cdot P}{L_{g}} - 0.867 \cdot V_{\text{dc}} \cdot V_{g}\right)}$$ \hspace{1cm} (13)

IV. SIMULATION RESULT

To confirm the validity of the proposed indirect current control algorithm and filter design method, a simulation has been performed using PSIM. The system parameters for simulation studies are given by: • output power $P = 300$ kW • grid voltage $V_{g} = 220$V/60Hz • dc-link voltage $V_{\text{dc}} = 700$V • switching frequency $f_{\text{sw}} = 6$kHz • critical load power = 40 kW. Assuming desired ripple rate of the grid-side inductor $r_{g} = 0.003$, the LCL filter values are calculated according to the design method mentioned in section III, and the resultant values are shown in Table I. Also, the simulated waveforms and FFT are shown in Fig.7. As shown in Figs.7(a) and (b), measured ripple rate of inverter-side inductor current r_{l} and capacitor voltage ripple attenuation a are 0.128 and 0.033.

| TABLE I. LCL FILTER VALUES USED IN THE SIMULATION |
|-----------------|------------------|
| L_{i} | 88uH |
| C_{f} | 255uF |
| L_{g} | 131uH |
respectively, which are close to calculated values of \(r_i = 0.15 \) and \(a = 0.03 \). Fig. 7(c) shows that the measured ripple rate of grid-side inductor current is 0.0027 which is within the specified limit of 0.003. Fig. 8 shows the simulation result of the transfer from stand-alone mode to grid-connected mode. It can be seen from Fig. 8(a) that the inverter is operated to match phase and magnitude of the inverter output voltage to the grid voltage. The phase mismatch decrease to zero in about 2 cycles. The inverter switch is not yet closed, and the grid-side inductor current is equal to the load current. After the phase match, the inverter switch is closed and grid current \(i_{lg} \) starts slowly increasing to its rated value, as shown in Fig. 8(b). Note that the transient on the capacitor voltage, which is the voltage across the critical load, is negligible at the turn-on of the inverter switch.

Fig. 9 shows the simulation result of the transfer from grid-connected mode to stand-alone mode. The inverter is injecting a current into the grid. At the moment of islanding occurrence, there exists a little transient voltage across the critical load, which is generated by the turn-off of recloser switch. During the clearing time, the capacitor and load voltages do not go through any transient. After the clearing time the inverter switch is turned off, and the controller is changed from grid-connected mode to stand-alone mode. It should be noted that there is no transient state across the load according to control mode change since the controller maintains voltage control.

V. EXPERIMENTAL RESULT

A 1kW utility interactive inverter has been built to verify the proposed control method with the parameters shown in Table II. Fig 10 shows the experimental setup for the proposed utility-interactive inverter system. A programmable AC source is used to emulate the utility grid.

<table>
<thead>
<tr>
<th>TABLE II: EXPERIMENTAL SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
</tr>
<tr>
<td>Grid voltage</td>
</tr>
<tr>
<td>DC-link voltage</td>
</tr>
<tr>
<td>Switching frequency</td>
</tr>
<tr>
<td>(L_i)</td>
</tr>
<tr>
<td>(C_f)</td>
</tr>
<tr>
<td>(L_g)</td>
</tr>
</tbody>
</table>
A magnetic contactor which is used as an inverter switch is located between critical load and the programmable AC source. The TMS320F2812 chip is used to implement the proposed control and the capacitor voltage, grid-side inductor current and grid voltage are sampled. An on/off signal for magnetic contactor is generated by the DSP controller. Fig. 11 shows the experimental waveforms of the proposed control during the grid-connected mode. The current command on the grid-side inductor is 3.2A, and theoretical magnitude and phase angle of capacitor voltage $|V_{Cf}|$ and α are calculated to be 90.22V and 5.42°, respectively. It can be seen from Fig. 12 that the measured magnitude and phase angle of capacitor voltage are about 90.3V and 5.46°, respectively. Fig. 13 shows the experimental waveforms of the transfer from grid-connected mode to stand-alone mode. The transient voltage across the load at the moment of islanding occurrence is negligible. Any noticeable transient is not observed across the load throughout the whole transition period including the clearing time and control mode change which is performed right after actual turn-off of the inverter switch.

VI. CONCLUSION

In this paper, a control algorithm for seamless transfer of three-phase utility-interactive inverters is proposed. By controlling the capacitor voltage in both grid-connected and stand-alone modes the proposed method is capable of providing critical loads with a stable and seamless voltage during the whole transition period including both clearing time and control-mode-change transition. Some drawbacks of the previous work [7] have been overcome: 1) The proposed method is able to regulate instantaneous values of injected current during the transient. 2) A LCL filter design method based on the exact LCL model is proposed to meet the harmonic limits by considering the ripple rate of the grid current in the grid-side inductance calculation. The proposed control method has been validated through simulation and experiment.

REFERENCES

